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Symmetry groups
History- bicolor symmetry
Anti-symmetry operations
bicolor point groups

Magnetic space groups
Cosets
Magnetic space group lattices
Opechowski-Guccione symbols

A group (G, * ) is a nonempty set G together with a binary operation * satisfying the
group axioms below. "a * b" represents the result of applying the operation * to the
ordered pair (a, b) of elements of G. The group axioms are the following:

Associativity: For all a, b and c in G, (a * b) * c = a * (b * c).
Identity element: There is an element e in G such that for all a in G, e * a = a * e = a.
Inverse element: For all a in G, there is an element b in G such that a * b = b * a = e,
where e is the identity element from the previous axiom.

You will often also see the axiom:
Closure: For all a and b in G, a * b belongs to G.

Group definition and properties

    Example:  Proper point group 4

4 = { 1, 4, 2, 4-1}
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Bicolor Symmetry Groups
1929 Heesch, introduces the antiidentity operation

properties:  u2 = 1, ut = tu  for all t∈T
aka time reversal group = {1,1’}

1945 Shubnikov, re-introduces concept

1951 Shubnikov, describes and illustrates all of the bicolor
point groups

1955 Belov et al., first complete listing of the bicolor space
groups

1957 Zamorzaev, group theoretical derivation of bicolor
space groups

1965 Opechowski and Guccione, first complete derivation
and enumeration of the bicolor space groups

2001 Litvin, corrected Opechowski-Guccione symbols

Alexey Vasilyevich Shubnikov 1887-1970
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Daniel B. Litvin
(1940- )

Pennsylvania State University
http://www.bk.psu.edu/faculty

/Litvin/

Derivation of Antisymmetry Point Groups
If M is an antisymmetry group, and 1’ an antiidentity operation

Type I, M = G for some crystallographic point group G

Type II, M = G ∪ G1’ for some crystallographic point group G

Type III, M = H ∪ (G\H)1’ for some crystallographic point group
G, where H is a halving group of G.

                        example:  G = 2/m = {1,2,i,m}

H                2 = {1,2}            m = {1,m}            = {1,i}
G\H              {i,m}                    {2,i}                            {2,m}
(G\H)1’        {i’,m’}                  {2’,i’}                         {2’,m’}
H ∪ (G\H)1’ {1,2,i’,m’}        {1,2’,i’,m}                 {1,2’,i’,m’}
M 2/m’     2’/m       2’/m’
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Example Magnetic Point Groups

Type I
G

Type II
G U Gu

Type II
H U (G\H)u

2 = {1,2} 21’ = {1,2,1’,2’} 2’ = {1,2’}

32
crystallographic

point groups

32
crystallographic

grey point groups

58
crystallographic

Heesch point groups

122 crystallographic magnetic point groups

groupspointmagneticnontrivialPoint
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matrix representations of
antisymmetry operations
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[010]2
half-turn

[010]2’
anti-half-turn

antiidentity

4 X 4

Seitz
notation (2y|0,0,0) (1|0,0,0)’ (2y|0,0,0)’

Derivation of Antisymmetry Space Groups
If M is an antisymmetry group, and 1’ an antiidentity

operation

Type I, M = F for some crystallographic space group F
 230 uncolored
Type II, M = F ∪ F1’ for some crystallographic space group F
 230 grey
Type III, M = D ∪ (F\D)1’ for some crystallographic space

group F, where D is a subgroup of index two of F.

  674 a. MT, where D is an equi-translation subgroup of F
(D has the same lattice type as F and M)

  517 b. MR, where D is an equi-class subgroup of F
(MR contains anti-translations and
    is doubled with respect to F)

 1651 Total

Cosets

Let G denote a group, H a subgroup of G and a ∈ G.  Then
the right coset of H in G determined by a, denoted Ha, is

Ha = {ha | h ∈ H}

The left coset of H in G determined by a, denoted aH, is

aH = {ah | h ∈ H}

A subgroup H of a group G is said to be normal if gH = Hg
for all g ∈ G, i.e., left and right cosets are the same.
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Cosets

Example:  Let G = 4 = {1,4,2,4-1}, H = 2 = {1,2}.  Find the
right cosets 2g and the left cosets g2 for each g ∈ 4.

2*1 = {1,2}1 = {1,2} 1*2 = 1{1,2} = {1,2}

2*4 = {1,2}4 = {4,4-1} 4*2 = 4{1,2} = {4,4-1}

2*2 = {1,2}2 = {2,1} 2*2 = 2{1,2} = {2,1}

2*4-1 = {1,2}4-1 = {4-1,4} 4-1*2 = {1,2}4-1 = {4-1,4}

Two unique cosets of 2 in 4.
The right and left cosets are the same, so 2 is a normal
subgroup.

Cosets
Of great interest is the coset decomposition of the space
groups with respect to their translational subgroups.

Let T = (I|tj) be a translational group defining a lattice, and W
be an arbitrary symmetry operation (W|w) of space group G.

Then for all of the products (I|tj)(W|w) = (W| w+tj), for every j
the matrix part W is the same.

Thus, TW denotes the right coset decomposition of T in G.
The left cosets WT are the same, so translational subgroups
are normal subgroups.

The decomposition of the space groups into cosets is the
basis of description of the space groups in the International
Tables.

Derivation of Antisymmetry Space Groups
If M is an antisymmetry group, and 1’ an antiidentity

operation

Type I, M = F for some crystallographic space group F

Type II, M = F ∪ F1’ for some crystallographic space group F

Type III, M = D ∪ (F\D)1’ for some crystallographic space
group F, where D is a subgroup of index two of F.

a. MT, where D is an equi-translation subgroup of F
(D has the same lattice type as F and M)

b. MR, where D is an equi-class subgroup of F
(MR contains anti-translations and
    is doubled with respect to F)

Magnetic Space Group
Type IIIa, MT, Example P2’/m (No. 11.3.61)

F = P2/m = T(1|0,0,0) + T(2y|0,0,0) + T(my|0,0,0) + T(i|0,0,0)

D = Pm = T(1|0,0,0) + T(my|0,0,0)

MT = D + (F\D)1’

(F\D) = T(2y|0,0,0) + T(i|0,0,0)

(F\D)1’ = T(2y|0,0,0)’ + T(i|0,0,0)’

MT = T(1|0,0,0) + T(my|0,0,0) + T(2y|0,0,0)’ + T(i|0,0,0)’
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MAGNETIC SPACE GROUP LATTICES
triclinic system

anti-translations join open and full circles
regular translations join open-open and full-full circles

Tα = anti-translation
Taken from Litvin (2001) after Opechowski & Guccione (1965)

MAGNETIC SPACE GROUP LATTICES
monoclinic system (y is the unique axis)

MAGNETIC SPACE GROUP LATTICES
orthorhombic system

MAGNETIC SPACE GROUP LATTICES
orthorhombic system, continued
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MAGNETIC SPACE GROUP LATTICES
orthorhombic system, continued

MAGNETIC SPACE GROUP LATTICES
tetragonal system

MAGNETIC SPACE GROUP LATTICES

trigonal 
system

hexagonal 
system

MAGNETIC SPACE GROUP LATTICES
cubic system
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Magnetic Space Group
Type IIIb, MR, Example P2bc’a’21 (No. 29.7.204)

F = Pca21 = T + T(mx|1/2,0,1/2) + T(my|1/2,0,0) + T(2z|0,0,1/2)

P2b = Pa,2b,c tα = b = (0,1,0)

D = Pca21=TD + TD(mx|1/2,1,1/2) + TD(my|1/2,1,0) + TD(2z|0,0,1/2)

If it is primed in the Opechowski-Guccione symbol then
it appears in D coupled with tα, and primed in (F\D)1’.

If it is unprimed in the Opechowski-Guccione symbol then
it appears unchanged in D, and coupled with tα and primed in
(F\D)1’.

MR=TD(1|0,0,0) + TD(mx|1/2,1,1/2) + TD(my|1/2,1,0) +TD(2z|0,0,1/2)
+TD(1|0,0,0)’ + TD(mx|1/2,0,1/2)’ + TD(my|1/2,0,0)’ + TD(2z|0,1,1/2)’

N1.N2.N3, where N1 is a sequence
number for the group type to which F
belongs, numbered the same as given
in the International Tables. N2 is a
sequence number of the magnetic
space group types of the superfamily
of F. Group types F always have the
assigned number N1.1.N3, and group
types F1' the assigned number
N1.2.N3 . N3 is a global sequential
numbering of the magnetic space
group types.

Opechowski-Guccione symbol of the
magnetic space group type, based on F.

group type of the
subgroup D of
index two of F
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Origin change and
orientation of D
with respect to F

Coset representatives
of the decomposition of
the magnetic space
group with respect to its
translational subgroup.

Recognizing the different space group types,
Type I, uncolored space groups 

First entry for each family in blue is
the regular uncolored space group

Recognizing the different space group types, 
Type II, grey groups 

Second entry for each family is the
grey space group.  The symbol is
the same as the uncolored group
followed by 1’ .
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Recognizing the different space group types,
Type IIIa, MT (no anti-translations)

Entries with primed
coset representatives

Recognizing the different space group types,
Type IIIb, MR (with anti-translations)

Entries with unprimed
coset representatives
(and colored lattices)

Typos in Opechowski & Guccione (1965)
corrected by Opechowski (1986), given in Litvin (2001)

Numbering
In Table 1

Opechowski &
Guccione (1965)

Opechowski 
(1986)

In both Opechowski & Guccione (1965) Opechowski (1986) the
symbol P2bc'ca is listed twice, in the numbering of Table 1, at
entries 54.11.438 and 54.13.440. The second has been
changed to P2bc'ca', a magnetic group which has a non-
magnetic subgroup of the type Pnna.

Other changes to Opechowski-Guccione symbols given by
Litvin (2001)

Opechowski &
Guccione (1965)

Opechowski (1986)

Numbering
In Table 1

Table 1
Litvin (2001)
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Colored lattice types that cannot be setup 
with color group option in GSAS 

Triclinic: P2s
Monoclinic: P2a, P2b, P2c, PC, C2C
Orthorhombic: P2a, P2b, P2c, PC, PF, PA, A2a, AI, C2C, CI
Tetragonal: P2c, PC, PI
Trigonal: RR
Hexagonal: P2c
Cubic: PF

Colored lattice types that can be setup 
with color group option in GSAS

Monoclinic: CP
Orthorhombic: AP, CP, FC, FA, IP
Tetragonal: IP
Cubic: IP


